Volume 10, Issue 2 (2020)                   Naqshejahan 2020, 10(2): 95-108 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taher Tolou del M, Pournaseri S, Samiee Kashi S. Model of the Effect of Non-Physical Factors on Human Physical Comfort. Naqshejahan 2020; 10 (2) :95-108
URL: http://bsnt.modares.ac.ir/article-2-39399-en.html
1- Architecture Department, Architecture & Urban Design Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran
2- Architecture Department, Architecture & Urban Design Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran , sa.samieekashi@sru.ac.ir
Abstract:   (3125 Views)
Background: Human comfort involves their physical, psychological and mental comfort. There are several factors that may affect human physical comfort; among them luminous, acoustic and thermal comfort can be mentioned. Usually in researches done in the field of human physical comfort, researchers tried to predetermine human perceived comfort by measuring some physical factors, whilst there are also other ones that can affect human comfort and are necessary to be considered.
Aims: The aim of this paper is to determine the non-physical factors that affect human physical comfort. Another aim is to achieve the model of human physical comfort affected by non-physical factors.
Methods: In this paper by conducting a library research, researches done in the field of non-physical factors that affect human physical comfort were investigated and analyzed; in this way that physical comfort evaluation methods for users of a space, factors affecting it, places in which those researches were done and those researches results were classified and analyzed. In this paper, among factors that can affect human physical comfort, luminous comfort, acoustic comfort and thermal comfort were studied. Analysis method was statistical and by modeling charts and defining oriented trend process in previous researches.
Findings and Conclusion: Findings of this paper indicated that human physical comfort in a space can not be predicted only by relying on physical factors that were usually used in comfort-related indicators.
 
Full-Text [PDF 647 kb]   (1252 Downloads)    
Article Type: Systematic Review | Subject: Highperformance Architecture
Received: 2019/12/29 | Accepted: 2020/02/29 | Published: 2020/09/20

References
1. Andargie MS, Touchie M, O'Brien W. A review of factors affecting occupant comfort in multi-unit residential buildings. Build Environ. 2019;160:106182. [Link] [DOI:10.1016/j.buildenv.2019.106182]
2. Krüger EL, Zannin PHT. Acoustic, thermal and luminous comfort in classrooms. Build Environ. 2004;39(9):1055-63. [Link] [DOI:10.1016/j.buildenv.2004.01.030]
3. Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Ind Health. 2006;44(3):388-98. [Link] [DOI:10.2486/indhealth.44.388]
4. Frontczak M, Wargocki P. Literature survey on how different factors influence human comfort in indoor environments. Build Environ. 2011;46(4):922-37. [Link] [DOI:10.1016/j.buildenv.2010.10.021]
5. Thuillier L. What is visual comfort and how do you achieve it [Internet]. UK: Saint-Gobain; 2017 [cited 2019 July 23]. Available from: https://multicomfort.saint-gobain.co.uk/recommended-level-of-light-into-a-building/. [Link]
6. Bangali J. Evaluation of discomfort glare by using lighting simulation software for optimal designing of indoor illumination systems. Int J Emerg Eng Res Technol. 2015;3(12):173-8. [Link]
7. Odeh IS. Evaluation of glare and lighting performance in nighttime highway construction projects [Dissertation]. Illinois: University of Illinois at Urbana-Champaign; 2010. [Link]
8. Motalebi G, Vojdanzadeh L. Effect of physical environmental of medical space in reducing patients' anxiety and stress (case study: a dental office). Honar-haye-Ziba. 2015;20(2):35-46. [Persian] [Link]
9. Takakura J, Nishimura T, Choi D, Egashira Y, Watanuki S. Nonthermal sensory input and altered human thermoregulation: effects of visual information depicting hot or cold environments. Int J Biometeorol. 2015;59(10):1453-60. [Link] [DOI:10.1007/s00484-015-0956-3]
10. Yoshikawa Y, Iwai D, Sato K. A study of thermal sensation with visuo-thermal projection interfaces. In: Proceedins of 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE); 2013 Oct 1-4; Tokyo, Japan. IEEE; 2013. p. 118-9. [Link] [DOI:10.1109/GCCE.2013.6664767]
11. Blackenberger D, Van Den Wymelenberg K, Stenson J. Visual effects of wood on thermal perception of interior environments. In: Proceedings of ARCC Conference Repository; 2019 May 29-June 1; Ryerson University, Toronto. [Link]
12. Trojan J, Fuchs X, Speth SL, Diers M. The rubber hand illusion induced by visual-thermal stimulation. Sci Rep. 2018;8(1):12417. [Link] [DOI:10.1038/s41598-018-29860-2]
13. Kanaya S, Matsushima Y, Yokosawa K. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership. PloS One. 2012;7(11):e47293. [Link] [DOI:10.1371/journal.pone.0047293]
14. Chinazzo G, Wienold J, Andersen M. Combined effects of daylight transmitted through coloured glazing and indoor temperature on thermal responses and overall comfort. Build Environ. 2018;144;583-97. [Link] [DOI:10.1016/j.buildenv.2018.08.045]
15. Bennett CA, Rey P. What's so hot about red? Hum Factors. 1972;14(2):149-54. [Link] [DOI:10.1177/001872087201400204]
16. Chinazzo G, Wienold J, Andersen M. Variation in thermal, visual and overall comfort evaluation under coloured glazing at different temperature levels. J Int Colour Assoc. 2019;23.45-54. [Link]
17. Chinazzo G, Chamilothori K, Wienold J, Andersen M. The effect of short exposure to coloured light on thermal perception: a study using virtual reality. No. CONF. 2017;273-9. [Link]
18. Fanger PO, Breum NO, Jerking E. Can colour and noise influence man's thermal comfort? Ergonomics. 1977;20(1):11-8. [Link] [DOI:10.1080/00140137708931596]
19. Huebner GM, Shipworth DT, Gauthier S, Witzel C, Raynham P, and Chan W. Saving energy with light? Experimental studies assessing the impact of colour temperature on thermal comfort. Energy Res Soc Sci. 2016;15:45-57. [Link] [DOI:10.1016/j.erss.2016.02.008]
20. Chinazzo G, Pastore L, Wienold J, Andersen M. A field study investigation on the influence of light level on subjective thermal perception in different seasons. In: Proceedings of the tenth Windsor Conference; 2018 Apr 12-15; Cumberland Lodge conference centre, Windsor Great Park, UK. [Link]
21. Zarrabi AH, Azarbayjani M, Day J, Thariyan E, Stearns E, Dale B. Visual qualities and perceived thermal comfort-results of survey studies in a LEED platinum office building. Build Res Inf Knoweldge. 2017. [Link]
22. Klemm W, Heusinkveld BG, Lenzholzer S, Jacobs MH, Van Hove B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build Environ. 2015;83:120-8. [Link] [DOI:10.1016/j.buildenv.2014.05.013]
23. Klemm W, Heusinkveld BG, Lenzholzer S, van Hove B. Street greenery and its physical and psychological impact on thermal comfort. Landscape Urban Plann. 2015;138:87-98. [Link] [DOI:10.1016/j.landurbplan.2015.02.009]
24. Krüger E. Impact of site-specific morphology on outdoor thermal perception: a case-study in a subtropical location. Urban Climate. 2017;21:123-35. [Link] [DOI:10.1016/j.uclim.2017.06.001]
25. Roussarie V, Siekierski E, Viollon S, Segretain S, Bojago S. What's so hot about sound?-influence of HVAC sound on thermal comfort. In: Proceedings of the 2005 Congress and Exposition on Noise Control Engineering; 2005 Aug 7-10; Rio de Janeiro, Brazil. p. 3559-68. [Link]
26. Maras I, Schmidt T, Paas B, Ziefle M, Schneider C. The impact of human-biometeorological factors on perceived thermal comfort in urban public places. 2016. [Link] [DOI:10.1127/metz/2016/0705]
27. Kalmár F. Investigation of thermal perceptions of subjects with diverse thermal histories in warm indoor environment. Build Environ. 2016;107:254-62. [Link] [DOI:10.1016/j.buildenv.2016.08.010]
28. Healey K, Webster-Mannison M. Exploring the influence of qualitative factors on the thermal comfort of office occupants. Archit Sci Rev. 2012;55(3):169-75. [Link] [DOI:10.1080/00038628.2012.688014]
29. Howell WC, Stramler CS. Contribution of psychological variables to the prediction of thermal comfort judgments in real world settings. ASHRAE Trans. 1981;87(5). [Link]
30. Ul Haq Gilani SI, Khan MH, Pao W. Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia, 2015;75:1373-9. [Link] [DOI:10.1016/j.egypro.2015.07.218]
31. Li HN, Chau CK, Tse MS, Tang SK. On the study of the effects of sea views, greenery views and personal characteristics on noise annoyance perception at homes. J Acoust Soc Am. 2012;131(3):2131-40. [Link] [DOI:10.1121/1.3681936]
32. Jakovljevic B, Paunovic K, Belojevic G. Road-traffic noise and factors influencing noise annoyance in an urban population. Environ Int. 2009;35(3):552-6. [Link] [DOI:10.1016/j.envint.2008.10.001]
33. Morihara T, Yano T, Nguyen T, Nguyen H, Nishimura T, Sato, T, et al. Impacts of residential and environmental factors on community responses to transportation noise in Vietnam. Temporal Des Arch Environ. 2011;11(1):57-60. [Link]
34. Sun K, Echevarria Sanchez GM, De Coensel B, Van Renterghem T, Talsma D, Botteldooren D. Personal audiovisual aptitude influences the interaction between landscape and soundscape appraisal. Front Psychol. 2018;9:780. [Link] [DOI:10.3389/fpsyg.2018.00780]
35. Mediastika CE, Binarti F. Reducing indoor noise levels using people's perception on greenery. Sci J Riga Technal Univ. Environ Climate Technol. 2013;11(1)19-27. [Link] [DOI:10.2478/rtuect-2013-0003]
36. Leung TM, Xu JM, Chau CK, Tang SK, Pun-Cheng LSC. The effects of neighborhood views containing multiple environmental features on road traffic noise perception at dwellings. J Acoust Soc Am. 2017;141(4):2399. [Link] [DOI:10.1121/1.4979336]
37. Viollon S, Lavandier C, Drake C. Influence of visual setting on sound ratings in an urban environment. Appl Acoustics. 2002;63(5):493-511. [Link] [DOI:10.1016/S0003-682X(01)00053-6]
38. Preis A, Hafke-Dyx H, Szychowska M, Kocinski J, Felcyn J. Audio-visual interaction of environmental noise. Noise Control Eng J. 2016;64(1):34-43. [Link] [DOI:10.3397/1/376357]
39. Leung TM, Chau CK, Tang SK, Pun LSC. On the study of effects of views to water space on noise annoyance perceptions at homes. 43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, INTERNOISE 2014, Melbourne, 16-19 November 2014. Unknown city: Australian Acoustical Society; 2014. [Link]
40. Li HN. Perception of noise annoyance [Dissertation]. Hung Hom, Hong Kong: The Hong Kong Polytechnic University; 2012. [Link]
41. Van Renterghem T, Botteldooren D. The effect of outdoor vegetation as seen from the dwelling's window on self-reported noise annoyance. In: Proceedings of 10th European Congress and Exposition on Noise Control Engineering; 2015 May 31-June 3; Maastricht, Netherlands. p. 2395-8. [Link]
42. Van Renterghem T, Botteldooren D. View on outdoor vegetation reduces noise annoyance for dwellers near busy roads. Landscape Urban Plann. 2016;148:203-15. [Link] [DOI:10.1016/j.landurbplan.2015.12.018]
43. Yang F, Bao ZY, Zhu ZJ. An assessment of psychological noise reduction by landscape plants. Int J Environ Res Public Health. 2011;8(4):1032-48. [Link] [DOI:10.3390/ijerph8041032]
44. Pedersen E, Larsman P. The impact of visual factors on noise annoyance among people living in the vicinity of wind turbines. J Environ Psychol. 2008;28(4):379-89. [Link] [DOI:10.1016/j.jenvp.2008.02.009]
45. Szychowska M, Hafke-Dys H, Preis A, Kociński J, Kleka P. The influence of audio-visual interactions on the annoyance ratings for wind turbines. Appl Acoustics. 2018;129:190-203. [Link] [DOI:10.1016/j.apacoust.2017.08.003]
46. Li HN, Chau CK, Tang SK. Can surrounding greenery reduce noise annoyance at home? Sci Total Environ. 2010;408(20):4376-84. [Link] [DOI:10.1016/j.scitotenv.2010.06.025]
47. Koprowska K, Łaszkiewicz E, Kronenberg J, Marcińczak S. Subjective perception of noise exposure in relation to urban green space availability. Urban Forestry Urban Green. 2018;31:93-102. [Link] [DOI:10.1016/j.ufug.2018.01.018]
48. Gidlöf-Gunnarsson A, Öhrström E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landscape Urban Plann. 2007;83(2-3):115-26. [Link] [DOI:10.1016/j.landurbplan.2007.03.003]
49. Dimitrova DD, Dzhambov AM. Perceived access to recreational/green areas as an effect modifier of the relationship between health and neighbourhood noise/air quality: Results from the 3rd European Quality of Life Survey (EQLS, 2011-2012). Urban Forestry Urban Green. 2017;23:54-60. [Link] [DOI:10.1016/j.ufug.2017.02.012]
50. Vardanyan KK, Hayrapetyan AK. Hygienic evaluation of microclimate conditions and noise level at the territory of university hospital complex" Heratsi". New Armen Med J. 2011;5(3):27-31. [Link]
51. Song XH, Wu QQ, Yu DM, Yong-ji PIA, Cho TD. Noise-reduction function and its affecting factors of plant communities. J Environ Sci Int. 2016;25(10):1407-15. [Link] [DOI:10.5322/JESI.2016.25.10.1407]
52. Dzhambov AM, Dimitrova DD. Green spaces and environmental noise perception. Urban Forestry Urban Green. 2015;14(4):1000-8. [Link] [DOI:10.1016/j.ufug.2015.09.006]
53. Dzhambov AM, Markevych I, Tilov B, Arabadzhiev Z, Stoyanov D, Gatseva P, Dimitrova DD. Lower noise annoyance associated with GIS-derived greenspace: pathways through perceived greenspace and residential noise. Int J Environ Res Public Health. 2018 Jul;15(7):E1533. [Link] [DOI:10.3390/ijerph15071533]
54. Dzhambov AM, Markevych I, Tilov BG, Dimitrova DD. Residential greenspace might modify the effect of road traffic noise exposure on general mental health in students. Urban Forestry Urban Green. 2018;34;233-9. [Link] [DOI:10.1016/j.ufug.2018.06.022]
55. Cassina L, Fredianelli L, Menichini I, Chiari C, Licitra G. Audio-visual preferences and tranquillity ratings in urban areas. Environments. 2018;5(1):1. [Link] [DOI:10.3390/environments5010001]
56. Camusso C, Pronello C. A study of relationships between traffic noise and annoyance for different urban site typologies. Transport Res Part D Transport Environ. 2016;44:122-33. [Link] [DOI:10.1016/j.trd.2016.02.007]
57. Puyana Romero V, Maffei L, Brambilla G, Ciaburro G. Acoustic, visual and spatial indicators for the description of the soundscape of waterfront areas with and without road traffic flow. Int J Environ Res Public Health. 2016;13(9): E934. [Link] [DOI:10.3390/ijerph13090934]
58. Dzhambov AM, Dimitrova DD. Urban green spaces' effectiveness as a psychological buffer for the negative health impact of noise pollution: a systematic review. Noise Health. 2014;16(70):157-65. [Link] [DOI:10.4103/1463-1741.134916]
59. Kastka J, Noack R. On the interaction of sensory experience, causal attributive cognitions and visual context parameters in noise annoyance. Dev Toxicol Environ Sci. 1987;15:345-62. [Link]
60. Van Renterghem T, Bockstael A, De Weirt V, Botteldooren D. Annoyance, detection and recognition of wind turbine noise. Sci Total Environ. 2013;456:333-45. [Link] [DOI:10.1016/j.scitotenv.2013.03.095]
61. Guo J. The effects of biophilic design in interior environments on noise perception: Designing a person-centered biophilic space for older adults [Dissertation]. Ames, Iowa: Iowa State University; 2016. [Link]
62. Rodriquez RG, Pattini A. Tolerance of discomfort glare from a large area source for work on a visual display. Light Res Technol. 2014;46(2):157-70. [Link] [DOI:10.1177/1477153512470386]
63. Tuaycharoen N, Tregenza PR. View and discomfort glare from windows. Light Res Technol. 2007;39(2):185-200. [Link] [DOI:10.1177/1365782807077193]
64. Osterhaus WK, Bailey IL. Large area glare sources and their effect on visual discomfort and visual performance at computer workstations. In: Proceedings of Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting; 1992 Oct 4-9; Houston, TX, USA. IEEE; 2002: p. 1825-9. [Link]
65. Rodriguez RG, Yamín Garretón JA, Pattini AE. Glare and cognitive performance in screen work in the presence of sunlight. Light Res Technol. 2016;48(2):221-38. [Link] [DOI:10.1177/1477153515577851]
66. Boubekri M, Boyer LL. Effect of window size and sunlight presence on glare. Light Res Technol. 1992;24(2):69-74. [Link] [DOI:10.1177/096032719202400203]
67. Shin JY, Yun GY, Kim JT. View types and luminance effects on discomfort glare assessment from windows. Energy Build. 2012;46:139-45. [Link] [DOI:10.1016/j.enbuild.2011.10.036]
68. Tuaycharoen N, Tregenza PR. Discomfort glare from interesting images. Light Res Technol. 2005;37(4):329-38. [Link] [DOI:10.1191/1365782805li147oa]
69. Hirning MB, Isoardi GL, Cowling I. Discomfort glare in open plan green buildings. Energy Build. 2014;70:427-40. [Link] [DOI:10.1016/j.enbuild.2013.11.053]
70. Kent MG, Altomonte S, Tregenza PR, Wilson R. Temporal variables and personal factors in glare sensation. Light Res Technol. 2016;48(6):689-710. [Link] [DOI:10.1177/1477153515578310]
71. Altomonte S, Kent MG, Tregenza PR, Wilson R. Visual task difficulty and temporal influences in glare response. Build Environ. 2016;95:209-26. [Link] [DOI:10.1016/j.buildenv.2015.09.021]
72. Garretón JY, Rodriguez R, Pattini A. Effects of perceived indoor temperature on daylight glare perception. Build Res Inf. 2016;44(8):907-19. [Link] [DOI:10.1080/09613218.2016.1103116]
73. Kent MG, Altomonte S, Tregenza PR, Wilson, R. Discomfort glare and time of day. Light Res Technol. 2015;47(6):641-57. [Link] [DOI:10.1177/1477153514547291]
74. Kent MG, Altomonte S, Wilson R, Tregenza PR. Temporal effects on glare response from daylight. Build Environ. 2017;113:49-64. [Link] [DOI:10.1016/j.buildenv.2016.09.002]
75. Kong Z, Utzinger DM, Freihoefer K, Steege T. The impact of interior design on visual discomfort reduction: A field study integrating lighting environments with POE survey. Build Environ. 2018;138:135-48. [Link] [DOI:10.1016/j.buildenv.2018.04.025]
76. Vásquez NG, Pereira FOR. Influence of the height of the line of sight in the evaluation of glare sensation in pre-school classrooms. In: Proceedings of the 28th Conference, Opportunities, Limits & Needs Towards an environmentally responsible architecture; 2012 Nov 7-9; Lima, Perú. [Link]
77. Hirning MB Isoardi GL, Coyne S, Hansen VG, Cowling I. Post occupancy evaluations relating to discomfort glare: a study of green buildings in Brisbane. Build Environ. 2013;59:349-57. [Link] [DOI:10.1016/j.buildenv.2012.08.032]
78. Osterhaus WKE. Discomfort glare assessment and prevention for daylight applications in office environments. Solar Energy. 2005;79(2):140-58. [Link] [DOI:10.1016/j.solener.2004.11.011]
79. Garretón JY, Rodriguez RG, Ruiz A, Pattini AE. Degree of eye opening: a new discomfort glare indicator. Build Environ. 2015;88:142-50. [Link] [DOI:10.1016/j.buildenv.2014.11.010]
80. Pierson C, Wienold J, Bodart M. Discomfort glare perception in daylighting: influencing factors. Energy Procedia. 2017;122:331-6. [Link] [DOI:10.1016/j.egypro.2017.07.332]
81. Pierson C, Wienold J, Bodart M. Review of factors influencing discomfort glare perception from daylight. Leukos. 2018;14(3):111-48. [Link] [DOI:10.1080/15502724.2018.1428617]
82. Chauvel P, Collins JB, Dogniau, R, Longmore J. Glare from windows: current views of the problem. Light Res Technol. 1982;14(1):31-46. [Link] [DOI:10.1177/096032718201400103]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.