1. Garber R. Optimisation stories: The impact of building information modelling on contemporary design practice. Archit Des. 2009;79(2):6-13. [
Link] [
DOI:10.1002/ad.842]
2. Banos R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J. Optimization methods applied to renewable and sustainable energy: A review. Renew Sustain Energy Rev. 2011;15(4):1753-66. [
Link] [
DOI:10.1016/j.rser.2010.12.008]
3. Wetter M, Wright J. A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization. Build Environ. 2004;39(8):989-99. [
Link] [
DOI:10.1016/j.buildenv.2004.01.022]
4. Wang L, Yan Z, Qiao Sh, Lu GM, Huang Y. Structural and morphological transformations of mesostructured titanium phosphate through hydrothermal treatment. J Colloid Interface Sci. 2007;316(2):954-61. [
Link] [
DOI:10.1016/j.jcis.2007.08.047]
5. Bambrook SM, Sproul AB, Jacob D. Design optimisation for a low energy home in Sydney. Energy Build. 2011;43(7):1702-11. [
Link] [
DOI:10.1016/j.enbuild.2011.03.013]
6. Goia F, Haase M, Perino M. Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Appl Energy. 2013;108:515-27. [
Link] [
DOI:10.1016/j.apenergy.2013.02.063]
7. Prianto E, Depecker P. Optimization of architectural design elements in tropical humid region with thermal comfort approach. Energy Build. 2003;35(3):273-80. [
Link] [
DOI:10.1016/S0378-7788(02)00089-0]
8. Heiselberg P, Brohus H, Hesselholt A, Rasmussen H, Seinre E, Thomas S. Application of sensitivity analysis in design of sustainable buildings. Renew Energy. 2009;34(9):2030-6. [
Link] [
DOI:10.1016/j.renene.2009.02.016]
9. Hasan A, Vuolle M, Sirén K. Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Build Environ. 2008;43(12):2022-34. [
Link] [
DOI:10.1016/j.buildenv.2007.12.003]
10. Roy R, Hinduja S, Teti R. Recent advances in engineering design optimisation: Challenges and future trends. CIRP Ann. 2008;57(2):697-715. [
Link] [
DOI:10.1016/j.cirp.2008.09.007]
11. Attia Sh, Hamdy M, O'Brien L, Carlucci S. Computational optimisation for zero energy buildings design: Interviews results with twenty-eight international experts. Building Simulation 2013- 13th International IBPSA Conference, 2013 26-28 August, Chambéry, France. Chambery: IBPSA; 2013. [
Link]
12. kelidestan.com [Internet]. Tehran: kelidestan.com; 2016 [2016 January 14]. Available from: http://www.kelidestan.com/keys/keys.php?key=641. [Persian] [
Link]
13. Pilechiha P, Mahdavinejad M, Rahimian FP, Carnemolla P, Seyedzadeh S. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Appl Energy. 2020;261:114356. [
Link] [
DOI:10.1016/j.apenergy.2019.114356]
14. Cao K, Huang B, Wang Sh, Lin H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comp Environ Urban Syst. 2012;36(3):257-69. [
Link] [
DOI:10.1016/j.compenvurbsys.2011.08.001]
15. Adamski M. Optimization of the form of a building on an oval base. Build Environ. 2007;42(4):1632-43. [
Link] [
DOI:10.1016/j.buildenv.2006.02.004]
16. Marks W. Multicriteria optimisation of shape of energy-saving buildings. Build Environ. 1997;32(4):331-9. [
Link] [
DOI:10.1016/S0360-1323(96)00065-0]
17. D'Cruz NA, Radford AD. A multicriteria model for building performance and design. Build Environ. 1987;22(3):167-79. [
Link] [
DOI:10.1016/0360-1323(87)90005-9]
18. Jedrzejuk H, Marks W. Optimization of shape and functional structure of buildings as well as heat source utilisation. Partial problems solution. Build Environ. 2002;37(11):1037-43. [
Link] [
DOI:10.1016/S0360-1323(01)00099-3]
19. Osyczka A. Computer aided multicriterion optimization system (CAMOS). In: Eschenauer HA, Thierauf G, editors. Discretization methods and structural optimization-procedures and applications 1989. Berlin: Springer; 1989. pp. 263-70. [
Link] [
DOI:10.1007/978-3-642-83707-4_33]
20. Castro-Lacouture D, Sefair JA, Flórez L, Medaglia AL. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia. Build Environ. 2009;44(6):1162-70. [
Link] [
DOI:10.1016/j.buildenv.2008.08.009]
21. Michalek J, Choudhary R, Papalambros P. Architectural layout design optimization. Eng Optim. 2002;34(5):461-84. [
Link] [
DOI:10.1080/03052150214016]
22. Chakrabarty BK. Computer-aided design in urban development and management-A software for integrated planning and design by optimization. Build Environ. 2007;42(1):473-94. [
Link] [
DOI:10.1016/j.buildenv.2005.08.010]
23. Petersen S, Svendsen S. Method for component-based economical optimisation for use in design of new low-energy buildings. Renew Energy. 2012;38(1):173-80. [
Link] [
DOI:10.1016/j.renene.2011.07.019]
24. Stavrakakis GM, Zervas PL, Sarimveis H, Markatos NC. Optimization of window-openings design for thermal comfort in naturally ventilated buildings. Appl Math Model. 2012;36(1):193-211. [
Link] [
DOI:10.1016/j.apm.2011.05.052]
25. Back T. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press; 1996. [
Link]
26. Ashlock D. Evolutionary computation for modeling and optimization. Berlin: Springer Science & Business Media; 2006. [
Link]
27. Darwin Ch. Evolution by natural selection: The London years, 1836-42 [Internet]. Chicago: Britannica; 2020 [cited 2016 August 16]. Available from: https://www.britannica.com/science/Copley-Medal [
Link]
28. Holland JH. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press; 1975. [
Link]
29. Wright J, Farmani R. The simultaneous optimization of building fabric construction, HVAC system size, and the plant control strategy. 7th International IBPSA Conference, 2001 August 13-15, Rio de Janeiro, Brazil. Berlin: Building Simulation; 2001. [
Link]
30. Coley DA, Schukat S. Low-energy design: Combining computer-based optimisation and human judgement. Build Environ. 2002;37(12):1241-7. [
Link] [
DOI:10.1016/S0360-1323(01)00106-8]
31. Znouda E, Ghrab-Morcos N, Hadj-Alouane A. Optimization of Mediterranean building design using genetic algorithms. Energy Build. 2007;39(2):148-53. [
Link] [
DOI:10.1016/j.enbuild.2005.11.015]
32. Panão MJ, Gonçalves HJ, Ferrão PM. Optimization of the urban building efficiency potential for mid-latitude climates using a genetic algorithm approach. Renew Energy. 2008;33(5):887-96. [
Link] [
DOI:10.1016/j.renene.2007.04.014]
33. Rakha T, Nassar K. Genetic algorithms for ceiling form optimization in response to daylight levels. Renew Energy. 2011;36(9):2348-56. [
Link] [
DOI:10.1016/j.renene.2011.02.006]
34. Pernodet F, Lahmidi H, Michel P. Use of genetic algorithms for multicriteria optimization of building refurbishment. 11th International IBPSA Conference, 2009 July 27-30, Glasgow, Scotland. Berlin: Building Simulation; 2009. [
Link]
35. Yi YK, Malkawi AM. Optimizing building form for energy performance based on hierarchical geometry relation. Autom Constr. 2009;18(6):825-33. [
Link] [
DOI:10.1016/j.autcon.2009.03.006]
36. Charron R, Athienitis A. The use of genetic algorithms for a net-zero energy solar home design optimisation tool. Proceedings of PLEA 2006 (23rd Conference on Passive and Low Energy Architecture), 2006 September 6-8, Geneva, Switzerland. Geneva: PLEA; 2006. [
Link]
37. Tuhus-Dubrow D, Krarti M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build Environ. 2010;45(7):1574-81. [
Link] [
DOI:10.1016/j.buildenv.2010.01.005]
38. Turrin M, Von Buelow P, Stouffs R. Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Adv Eng Inform. 2011;25(4):656-75. [
Link] [
DOI:10.1016/j.aei.2011.07.009]
39. Magnier L, Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Build Environ. 2010;45(3):739-46. [
Link] [
DOI:10.1016/j.buildenv.2009.08.016]
40. Deb K. Multi-objective optimization using evolutionary algorithms. Hoboken: John Wiley & Sons; 2001. [
Link]
41. Chantrelle FP, Lahmidi H, Keilholz W, El Mankibi M, Michel P. Development of a multicriteria tool for optimizing the renovation of buildings. Appl Energy. 2011;88(4):1386-94. [
Link] [
DOI:10.1016/j.apenergy.2010.10.002]
42. Evins R, Pointer P, Vaidyanathan R, Burgess S. A case study exploring regulated energy use in domestic buildings using design-of-experiments and multi-objective optimisation. Build Environ. 2012;54:126-36. [
Link] [
DOI:10.1016/j.buildenv.2012.02.012]
43. Palonen M, Hasan A, Siren K. A genetic algorithm for optimization of building envelope and HVAC system parameters. 11th International IBPSA Conference, 2009 July 27-30, Glasgow, Scotland. Berlin: Building Simulation; 2009. pp. 159-66. [
Link]
44. Sambou V, Lartigue B, Monchoux F, Adj M. Thermal optimization of multilayered walls using genetic algorithms. Energy Build. 2009;41(10):1031-6. [
Link] [
DOI:10.1016/j.enbuild.2009.05.007]
45. Wang W, Zmeureanu R, Rivard H. Applying multi-objective genetic algorithms in green building design optimization. Build Environ. 2005;40(11):1512-25. [
Link] [
DOI:10.1016/j.buildenv.2004.11.017]
46. Shi X. Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm. Energy. 2011;36(3):1659-67. [
Link] [
DOI:10.1016/j.energy.2010.12.064]
47. Caldas LG, Norford LK. A design optimization tool based on a genetic algorithm. Autom Constr. 2002;11(2):173-84. [
Link] [
DOI:10.1016/S0926-5805(00)00096-0]
48. Lee JH. Optimization of indoor climate conditioning with passive and active methods using GA and CFD. Build Environ. 2007;42(9):3333-40. [
Link] [
DOI:10.1016/j.buildenv.2006.08.029]
49. Fogel LJ. Intelligence through simulated evolution: Forty years of evolutionary programming. Hoboken: Wiley; 1999. [
Link]
50. Sette S, Boullart L. Genetic programming: principles and applications. Eng Appl Artif Intell. 2001;14(6):727-36. [
Link] [
DOI:10.1016/S0952-1976(02)00013-1]
51. Fong KF, Hanby VI, Chow TT. HVAC system optimization for energy management by evolutionary programming. Energy Build. 2006;38(3):220-31. [
Link] [
DOI:10.1016/j.enbuild.2005.05.008]
52. Alvarez L. Design optimization based on genetic programming. Bradford: University of Bradford; 2000. [
Link]
53. Kim K, Shan Y, Nguyen XH, McKay RI. Probabilistic model building in genetic programming: A critical review. Genet Program Evol Mach. 2014;15(2):115-67. [
Link] [
DOI:10.1007/s10710-013-9205-x]
54. Gholami MM, Ross BJ. Passive solar building design using genetic programming. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014 July 12, Vancouver, Canada. New York: Association for Computing Machinery; 2014. pp. 1111-8. [
Link] [
DOI:10.1145/2576768.2598211]
55. Iruthayarajan MW, Baskar S. Evolutionary algorithms based design of multivariable PID controller. Expert Syst Appl. 2009;36(5):9159-67. [
Link] [
DOI:10.1016/j.eswa.2008.12.033]
56. Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. Proceedings of IEEE International Conference on Evolutionary Computation, 1996 May 20-22, Nagoya, Japan. Piscataway: IEEE; 1996. [
Link]
57. Kämpf JH, Robinson D. A hybrid CMA-ES and HDE optimisation algorithm with application to solar energy potential. Appl Soft Comput. 2009;9(2):738-45. [
Link] [
DOI:10.1016/j.asoc.2008.09.009]
58. Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11(4):341-59. [
Link] [
DOI:10.1023/A:1008202821328]
59. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, 1995 November 27-1 December, Perth, Australia. Piscataway: IEEE; 1995. [
Link]
60. Delgarm N, Sajadi B, Kowsary F, Delgarm S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl Energy. 2016;170:293-303. [
Link] [
DOI:10.1016/j.apenergy.2016.02.141]
61. Kennedy J. Particle swarm optimization. Sammut C, Webb GI. Boston: Springer; 2010. [
Link]
62. Ferrara M, Sirombo E, Monti A, Fabrizio E, Filippi M. Influence of envelope design in the optimization of the operational energy costs of a multi-family building. Energy Procedia. 2016;101:216-23. [
Link] [
DOI:10.1016/j.egypro.2016.11.028]
63. Rapone G, Saro O. Optimisation of curtain wall façades for office buildings by means of PSO algorithm. Energy Build. 2012;45:189-96. [
Link] [
DOI:10.1016/j.enbuild.2011.11.003]
64. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: Harmony search. Simulation. 2001;76(2):60-8. [
Link] [
DOI:10.1177/003754970107600201]
65. Yang X. Harmony search as a metaheuristic algorithm. In: Geem Z, editor. Music-inspired harmony search algorithm: Theory and applications. Berlin: Springer; 2009. pp. 1-14. [
Link] [
DOI:10.1007/978-3-642-00185-7_1]
66. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng. 2008;197(33-40):3080-91. [
Link] [
DOI:10.1016/j.cma.2008.02.006]
67. Moh'd Alia O, Mandava R, Aziz ME. A hybrid harmony search algorithm for MRI brain segmentation. Evolut Intell. 2011;4(1):31-49. [
Link] [
DOI:10.1007/s12065-011-0048-1]
68. Dorigo M, Blum C. Ant colony optimization theory: A survey. Theor Comput Sci. 2005;344(2-3):243-78. [
Link] [
DOI:10.1016/j.tcs.2005.05.020]
69. Angus D, Hendtlass T. Dynamic ant colony optimisation. Appl Intell. 2005;23(1):33-8. [
Link] [
DOI:10.1007/s10489-005-2370-8]
70. Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern. 1996;26(1):29-41. [
Link] [
DOI:10.1109/3477.484436]
71. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671-80. [
Link] [
DOI:10.1126/science.220.4598.671]
72. Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J Optim Theory Appl. 1985;45(1):41-51. [
Link] [
DOI:10.1007/BF00940812]
73. Hwang CR. Simulated annealing: Theory and applications. Acta Applicandae Mathematicae. 1988;12(1):108-11. [
Link]
74. Kolda TG, Lewis RM, Torczon V. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Rev. 2003;45(3):385-482. [
Link] [
DOI:10.1137/S003614450242889]
75. Torczon V. PDS: Direct search methods for unconstrained optimization on either sequential or parallel machines. Houston: Rice University; 1992. [
Link] [
DOI:10.21236/ADA455473]
76. Hooke R, Jeeves TA. "Direct Search" solution of numerical and statistical problems. J ACM. 1961;8(2):212-29. [
Link] [
DOI:10.1145/321062.321069]
77. Lewis RM, Torczon V, Trosset MW. Direct search methods: Then and now. J Comput Appl Math. 2000;124(1-2):191-207. [
Link] [
DOI:10.1016/S0377-0427(00)00423-4]
78. Peippo K, Lund PD, Vartiainen E. Multivariate optimization of design trade-offs for solar low energy buildings. Energy Build. 1999;29(2):189-205. [
Link] [
DOI:10.1016/S0378-7788(98)00055-3]
79. Noyes J, Weisstein EW. Linear Programming [Internet]. New York: Wolfram MathWorld; 2016 [cited 2016 August 17]. Available from: http://mathworld.wolfram.com/LinearProgramming.html [
Link]
80. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308-13. [
Link] [
DOI:10.1093/comjnl/7.4.308]
81. Gong X, Akashi Y, Sumiyoshi D. Optimization of passive design measures for residential buildings in different Chinese areas. Build Environ. 2012;58:46-57. [
Link] [
DOI:10.1016/j.buildenv.2012.06.014]
82. Saporito A, Day AR, Karayiannis TG, Parand F. Multi-parameter building thermal analysis using the lattice method for global optimisation. Energy Build. 2001;33(3):267-74. [
Link] [
DOI:10.1016/S0378-7788(00)00091-8]
83. Mitchell RA, Kaplan JL. Nonlinear constrained optimization by a nonrandom complex method. J Res Natl Bur Stand Sect C Eng Instrum. 1968;72C(4):249-58. [
Link] [
DOI:10.6028/jres.072C.019]
84. Bouchlaghem N. Optimising the design of building envelopes for thermal performance. Autom Constr. 2000;10(1):101-12. [
Link] [
DOI:10.1016/S0926-5805(99)00043-6]
85. Bouchlaghem NM, Letherman KM. Numerical optimization applied to the thermal design of buildings. Build Environ. 1990;25(2):117-24. [
Link] [
DOI:10.1016/0360-1323(90)90023-K]
86. Eisenhower B, Fonoberov V, Mezic I. Uncertainty-weighted meta-model optimization in building energy models. Proceedings of 1st Building Simulation And Optimization Conference, 2012 September 10-11, Loughborough, UK. Loughborough: IBPSA England; 2012. [
Link]
87. Juan YK, Gao P, Wang J. A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy Build. 2010;42(3):290-7. [
Link] [
DOI:10.1016/j.enbuild.2009.09.006]
88. Hamdy M, Hasan A, Siren K. Combination of optimization algorithms for a multi-objective building design problem. IBPSA: 11th International Building Performance Simulation Association Conference, 2007 July 27-30, Glasgow, United Kingdom. Glasgow: IBPSA; 2007. [
Link]
89. Pyeongchan I, Krarti M. Design optimization of energy efficient residential buildings in Tunisia. Build Environ. 2012;58:81-90. [
Link] [
DOI:10.1016/j.buildenv.2012.06.012]
90. Kämpf JH, Wetter M, Robinson D. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using EnergyPlus. J Build Perform Simul. 2010;3(2):103-20. [
Link] [
DOI:10.1080/19401490903494597]
91. Anderson R, Christensen C, Horowitz S. Program design analysis using BEopt building energy optimization software: Defining a technology pathway leading to new homes with zero peak cooling demand [Report]. Golden: National Renewable Energy Laboratory; 2006 August. Report No.: NREL/CP-550-39821. Contract No.: DE-AC36-99-GO10337. [
Link]
92. Yuan S, Wang Sh, Tian N. Swarm intelligence optimization and its application in geophysical data inversion. Appl Geophys. 2009;6(2):166-4. [
Link] [
DOI:10.1007/s11770-009-0018-x]