1. Hong T, Yan D, D'Oca S, Chen CF. Ten questions concerning occupant behavior in buildings: The big picture. Building and Environment. 2017 Mar 1;114:518-30. https://doi.org/10.1016/j.buildenv.2016.12.006 [
Article] [
DOI]
2. D’Oca S, Hong T, Langevin J. The human dimensions of energy use in buildings: A review. Renewable and Sustainable Energy Reviews. 2018 Jan 1;81:731-42. https://doi.org/10.1016/j.rser.2017.08.019 [
Article] [
DOI]
3. Delzendeh E, Wu S, Lee A, Zhou Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renewable and Sustainable Energy Reviews. 2017 Dec 1;80:1061-71. https://doi.org/10.1016/j.rser.2017.05.264 [
Article] [
DOI]
4. Stazi F, Naspi F, D'Orazio M. A literature review on driving factors and contextual events influencing occupants' behaviours in buildings. Building and Environment. 2017 Jun 1;118:40-66. https://doi.org/10.1016/j.buildenv.2017.03.021 [
Article] [
DOI]
5. Buso T, Fabi V, Andersen RK, Corgnati SP. Occupant behaviour and robustness of building design. Building and Environment. 2015 Dec 1;94:694-703. https://doi.org/10.1016/j.buildenv.2015.11.003 [
Article] [
DOI]
6. Bahaj AS, James PA. Urban energy generation: The added value of photovoltaics in social housing. Renewable and Sustainable Energy Reviews. 2007 Dec 1;11(9):2121-36. https://doi.org/10.1016/j.rser.2006.03.007 [
Article] [
DOI]
7. Sonderegger RC. Movers and stayers: the resident's contribution to variation across houses in energy consumption for space heating. Energy and buildings. 1978 Apr 1;1(3):313-24. https://doi.org/10.1016/0378-7788(78)90011-7 [
Article] [
DOI]
8. Maier T, Krzaczek M, Tejchman J. Comparison of physical performances of the ventilation systems in low-energy residential houses. Energy and Buildings. 2009 Mar 1;41(3):337-53. https://doi.org/10.1016/j.enbuild.2008.10.007 [
Article] [
DOI]
9. Hong T, Taylor-Lange SC, D’Oca S, Yan D, Corgnati SP. Advances in research and applications of energy-related occupant behavior in buildings. Energy and buildings. 2016 Mar 15;116:694-702. https://doi.org/10.1016/j.enbuild.2015.11.052 [
Article] [
DOI]
10. Milne GR. The energy implications of a climate-based indoor air temperature standard in Standards for thermal comfort: indoor air temperature standards for the 21st century. Ed. Nicol JF, Humphreys MA, Sykes O and Roaf S. 1995. [
Article]
11. Brager GS, De Dear RJ. Thermal adaptation in the built environment: a literature review. Energy and buildings. 1998 Feb 1;27(1):83-96. https://doi.org/10.1016/S0378-7788(97)00053-4 [
Article] [
DOI]
12. Luo M, Wang Z, Brager G, Cao B, Zhu Y. Indoor climate experience, migration, and thermal comfort expectation in buildings. Building and Environment. 2018 Aug 15;141:262-72. https://doi.org/10.1016/j.buildenv.2018.05.047 [
Article] [
DOI]
13. Wohlwill J.F. Behavioral response and adaptation to environmental stimulation in: A. Damon (Ed.). Physiological Anthropology. Harvard Univ. Press, Cambridge. MA. 1975. pp. 20.5-334. [
Article]
14. American Society of Heating, Refrigerating, Air-Conditioning Engineers. ASHRAE Handbook: Refrigeration systems and applications. American Society of Heating, Refrigerating and Air Conditioning Engineers; Atlanta. 2017. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2017-ashrae-handbook-fundamentals [
Article]
15. Heidari S. Thermal comfort temperature of people of Tehran. Iran. jounal of fine arts-Architectural and urbanisim. 2011(38). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=97328 [
Article]
16. Humphreys MA. Clothing and comfort of secondary school children in summertime. Thermal comfort and moderate heat stress, proceedings of CIB commission W45 (Human Requirements).London. 1972. [
Article]
17. Humphreys, M. A. Field studies of thermal comfort compared and applied. Building Service Engineer.1976; 44: 5-27. [
Article]
18. Nicol F. Thermal comfort: a handbook for field studies toward an adaptive model. London: University of East London; 1993.
19. Zomorodian ZS, Aminian S, Tahbaz M. Thermal Comfort Assessment in Classrooms in the Hot and Dry Climate of Iran Field Survey in a Primary School of Kashan. Honar-Ha-Ye-Ziba: Memary Va Shahrsazi. 2017 Feb 19;21(4):17-28. 10.22059/jfaup.2017.61653
20. Yao R, Liu J, Li B. Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy. 2010 Mar 1;87(3):1015-22. https://doi.org/10.1016/j.apenergy.2009.09.028
21. ter Mors S, Hensen JL, Loomans MG, Boerstra AC. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment. 2011 Dec 1;46(12):2454-61. https://doi.org/10.1016/j.buildenv.2011.05.025
22. Hussein I, Rahman. M.H.A. Field study on thermal comfort in Malaysia.2009. dsdsdsshttp://dspace.uniten.edu.my/jspui/handle/123456789/6457
23. DeDear R, Brager G, Cooper D. Developing an adaptive model of thermal comfort and preference: final report [on] ASHRAE RP-884. Macquarie Research Limited; 1997.
24. https://escholarship.org/uc/item/4qq2p9c6.
25. de Dear R, Fountain M. Field experiments on occupant comfort and office thermal environments in a hot-humid climate.1994. https://escholarship.org/uc/item/97n1d8hd
26. Auliciems A. Towards a psycho-physiological model of thermal perception. International journal of biometeorology. 1981 Jun 1;25(2):109-22. https://doi.org/10.1007/BF02184458
27. Auliciems A. Airconditioning in Australia III—thermobile controls. Architectural Science Review. 1990 Jun 1;33(2):43-8. https://doi.org/10.1080/00038628.1990.9696669
28. Veitch R, Arkkelin D. Environmental psychology: An interdisciplinary perspective. Pearson College Division; 1995.
29. Nikolopoulou M, Steemers K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings. 2003 Jan 1;35(1):95-101. https://doi.org/10.1016/S0378-7788(02)00084-1
30. Oseland N.A., Humphreys M.A., Nicol J.F., Baker N.V., Parsons K.C. Building design and management for thermal comfort: BRE Client Report CR 203/98, Building Research Establishment Ltd, Watford, United Kingdom.1998.
31. Haldi F, Robinson D. On the behaviour and adaptation of office occupants. Building and environment. 2008 Dec 1;43(12):2163-77. https://doi.org/10.1016/j.buildenv.2008.01.003
32. Parsons K. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. CRC press; 2014 Apr 9.
33. Jung W, Jazizadeh F. Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions. Applied Energy. 2019 Apr 1;239:1471-508. https://doi.org/10.1016/j.apenergy.2019.01.070
34. Stazi F, Naspi F. Triggers for Users’ Behaviours. InImpact of Occupants' Behaviour on Zero-Energy Buildings 2018 (pp. 19-29). Springer, Cham.https://doi.org/10.1007/978-3-319-71867-5_4
35. Pisello AL, Castaldo VL, Piselli C, Fabiani C, Cotana F. How peers’ personal attitudes affect indoor microclimate and energy need in an institutional building: Results from a continuous monitoring campaign in summer and winter conditions. Energy and Buildings. 2016 Aug 15;126:485-97. https://doi.org/10.1016/j.enbuild.2016.05.053
36. Andersen RV, Toftum J, Andersen KK, Olesen BW. Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy and Buildings. 2009 Jan 1;41(1):11-6. https://doi.org/10.1016/j.enbuild.2008.07.004
37. Steemers K, Manchanda S. Energy efficient design and occupant well-being: Case studies in the UK and India. Building and environment. 2010 Feb 1;45(2):270-8. https://doi.org/10.1016/j.buildenv.2009.08.025
38. Howard-Reed C, Wallace LA, Ott WR. The effect of opening windows on air change rates in two homes. Journal of the Air & Waste Management Association. 2002 Feb 1;52(2):147-59. https://doi.org/10.1080/10473289.2002.10470775
39. Schweiker M, Haldi F, Shukuya M, Robinson D. Verification of stochastic models of window opening behaviour for residential buildings. Journal of Building Performance Simulation. 2012 Jan 1;5(1):55-74. https://doi.org/10.1080/19401493.2011.567422
40. Nakaya T, Matsubara N, Kurazumi Y. Use of occupant behaviour to control the indoor climate in Japanese residences. InProceedings of conference: Air Conditioning and the Low Carbon Cooling Challenge, Windsor, UK 2008 Jul 27 (pp. 27-29). http://nceub.org.uk.
41. Roetzel A, Tsangrassoulis A, Dietrich U, Busching S. A review of occupant control on natural ventilation. Renewable and Sustainable Energy Reviews. 2010 Apr 1;14(3):1001-13. https://doi.org/10.1016/j.rser.2009.11.005
42. Hetherington J, Roetzel A, Fuller R. The impact of occupant behaviour on residential greenhouse gas emissions reduction. Journal of Green Building. 2015;10(4):127-40. https://doi.org/10.3992/jgb.10.4.127
43. Heidari S. Thermal comfort in Iranian courtyard housing (Doctoral dissertation, University of Sheffield).2000. http://etheses.whiterose.ac.uk/10239/
44. Nasrollahi N, Hatami M, Khastar SR, Taleghani M. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustainable cities and society. 2017 Nov 1;35:449-67. https://doi.org/10.1016/j.scs.2017.08.017
45. Heidari S. Thermal Adaptation in Architecture; First Step of Energy Saving. City: University of Tehran Press. 2014.
46. Heidari S, Sharples S. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings. 2002 Jul 1;34(6):607-14. https://doi.org/10.1016/S0378-7788(02)00011-7
47. Hashemi Rafsanjani L, Heidari S. Evaluating adaptive thermal comfort in residential buildings in hot-arid climates Case study: Kerman province. Journal of Architecture in Hot and Dry climate. 2018; 6(7):43-65. 10.29252/ahdc.2018.1422
48. Giamalaki M, Kolokotsa D. Understanding the thermal experience of elderly people in their residences: Study on thermal comfort and adaptive behaviors of senior citizens in Crete, Greece. Energy and Buildings. 2019 Feb 15;185:76-87. https://doi.org/10.1016/j.enbuild.2018.12.025
49. Heydarian A, McIlvennie C, Arpan L, Yousefi S, Syndicus M, Schweiker M, Jazizadeh F, Rissetto R, Pisello AL, Piselli C, Berger C. What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories. Building and Environment. 2020 May 13:106928.