1. Lee T K., Cho S H. & Kim J. T., Residents’ Adjusting Behaviour to Enhance Indoor Environmental Comfort in Apartments. 2012, 28–40, 21(1), Indoor and Built Environment, DOI: 10.1177/1420326X11420120 [
Article] [
DOI]
2. Wong L T., Fong K N K. Mui K. W. Wong W W Y. & Lee L. W., A field survey of the expected desirable thermal environment for older people. 2009, 336–345, 18(4), Indoor Built Environ, https://doi.org/10.1177/1420326X09337044 [
Article] [
DOI]
3. [3] Chao C Y., Chan G Y. & Ho L., Feasibility study of an indoor air quality measurement protocol on parameters in mechanically ventilated and air-conditioned buildings. 2001, 3–19, 10(1), Indoor Built Environ, https://doi.org/10.1159/000049209
4. Nasrollahi N., Knight I. & Jones P., Workplace satisfaction and thermal comfort in air conditioned office buildings: findings from a summer survey and field experiments in Iran. 2008, 69–79, 17(1), Indoor Built Environ, DOI: 10.1177/1420326X07086945 [
Article] [
DOI]
5. Cheng M J., Hwang R L. & Lin T. P., Field experiments on thermal comfort requirements for campus dormitories in Taiwan. 2008, 191–202, 17(3), Indoor Built Environ, DOI: 10.1177/1420326X08090571 [
Article] [
DOI]
6. Choi Y. J., Comparison study on indoor environmental effects of front balcony in apartment house. 2005, 265–274, 21(10), J Archit Inst Korea, http://journal.auric.kr/jaik/Archive_sc/200510/10 [
Article]
7. Kim Y K., Park J Y. & Yee J. J., An experimental study on evaluation of drainage flow performance and noise in the united plumbing system. 2010, 297–304, 26(4), J Archit Inst Korea, http://journal.auric.kr/jaik_pd/ArticleDetail/RD_R/240845 [
Article]
8. Kim J T, & Kim G., Overview and developments in optical daylighting systems for building a healthy environment. 2010, 256–259, 45, Indoor Built Environ, https://doi.org/10.1016/j.buildenv.2009.08.024 [
Article] [
DOI]
9. Tavakoli E., Zomorodian Z-S. Tahsildoost M. & Hafezi M., Assessment of Occupant's Behavior on Energy Consumption: Case of Shahid Pakdel Residential Complex in Esfahan. 2019, 7-29, 22(3), Iranian Journal of Energy, http://necjournals.ir/article-1-1533-en.html [
Article]
10. EBC IEA., Annex 53- “Total energy use in buildings”. 2013, 53, 132, Final Report Annex, DOI: 10.1016/j.enbuild.2017.07.038 [
Article] [
DOI]
11. Hong T., Taylor-Lange S C. D’Oca S. Yan D. & Corgnati S. P., Advances in research and applications of energy-related occupant behavior in buildings. 2016, 694-702, 116, Energy and Building, https://doi.org/10.1016/j.enbuild.2015.11.052 [
Article] [
DOI]
12. Schweiker M., & Shukuya M., Comparison of theoretical and statistical models of air-conditioning-unit usage behaviour in a residential setting under Japanese climatic conditions. (2009), 2137-2149, 44 (10), Building and Environment, https://doi.org/10.1016/j.buildenv.2009.03.004 [
Article] [
DOI]
13. Fabi V., Andersen R V. Corgnati S. & Olesen B. W., Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. 2012, 188-198, (58), Building and Environment, https://doi.org/10.1016/j.buildenv.2012.07.009 [
Article] [
DOI]
14. Hashemi Rafsanjani L., & Heidari S., Evaluating adaptive thermal comfort in residential buildings in hot-arid climates Case study: Kerman province. 2018, 43-65, 6 (7), Journal of architecture in hot and dry climate, DOI: 10.29252/ahdc.2018.1422 [
Article] [
DOI]
15. Sargazi M A., Tahbaz M. Zargar A. H., Adaptive behaviors and summer thermal comfort in the indoor environments of the vernacular architecture of Sistan region, Iran. 2020, 169-196, 8 (12), Journal of architecture in hot and dry climate, Doi: 10.29252/ahdc.2021.15847.1489 [
Article] [
DOI]
16. Majidi F- A., Heidari S. Ghalenoei M. & ghasemi Sichani M., Seasonal Difference of Thermal Comfort in New and Old Neighborhoods (Case Study: Jolfa and Mardavij Districts of Isfahan). 2019, 31-42, 23 (2), Honar-Ha-Ye-Ziba: Memary Va Shahrsazi, Doi: 10.22059/jfaup.2018.255768.672006 [
Article] [
DOI]
17. Majidi. F- A., Heidari S. Qal‘eh Noei M. & Qassemi Sichani M., Evaluation of Thermal Comfort Comparisons in Residential Neighborhoods (Case study: Ali Gholi Agha and Dashtestan neighborhoods in Isfahan). 2019, 47-64, 8 (15), Journal of Iranian Architecture Studies, DOI: 10.22052/1.15.47 [
Article] [
DOI]
18. Majidi F-A., Heidari S. Ghalehnoee M. & Ghasemi Cichani M., Assessment and Analysis of the Thermal Comfort Conditions in Open Spaces of Residential Neighborhoods Using Thermal Indicators (Case Study: Neighborhoods of Isfahan City). 2020, 113-126, 10 (2), Journal of Iranian Architecture & Urbanism (JIAU), https://doi.org/10.30475/isau.2020.103467 [
Article] [
DOI]
19. Abodollahzadeh S M., Heidari S. & Einifar A., The investigation of thermal adaptation in apartments in hot and dry climate: A study on thermal comfort and thermal behavior in apartments in Shiraz. 2021, 33-48, 11(3), Tarbiat Modares University Press, Doi: 20.1001.1.23224991.1400.11.3.2.9 [
Article] [
DOI]
20. Ayali H., Keshmiri H. & Movahed K., Study of thermal behavior adaptability of apartment residents for achieving thermal comfort in warm months in Shiraz. 2019, 1-12, 7(1), Journal of Sustainable Architecture and Urban Design, Doi: 10.22061/jsaud.2019.3652.1158 [
Article] [
DOI]
21. Mortaheb R., & Heidari S., Presenting a model of energy saving using the thermal comfort equation in Isfahan residential complexes. International Conference on Architecture, Urbanism, Civil Engineering, Art, Environment Future; look to the past, March 2016, Tehran, Iran, Institute of Art and Architecture. [
Article]
22. Zare Mohazabieh A., Shahcheraghi A. & Heydari S., Indoor Environmental Quality with an Emphasis on Thermal Comfort in Traditional Houses, Case studies: Two Qajar Houses in Shiraz. 2016, 85-100, 5(9), Journal of Iranian Architecture Studies, https://jias.kashanu.ac.ir/article_111760.html [
Article]
23. Zare Mohazzabieh A., Heydari S. & Shahcheraghi A., Indoor Environmental Quality in Qajar Houses of Shiraz with an emphasis on Thermal Comfort and Daylighting (case study: Nemati House). 2020, 269-29, 7 (10), Journal of architecture in hot and dry climate, doi: 10.29252/ahdc.2020.12108.1261 [
Article] [
DOI]
24. Ryu J., & Kim J., Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments. (2021), 1-20, 13 (21), Sustainability, https://doi.org/10.3390/su132111767 [
Article]
25. Hong T., Yan D. D’Oca S. & Chen C., Ten questions concerning occupant behavior in buildings: The big picture. 2016, 518-530, 114, Building and Environment, https://doi.org/10.1016/j.buildenv.2016.12.006 [
Article] [
DOI]
26. Gong X., Meng Q. & and Yu Y., A Field Study on Thermal Comfort in Multi-Storey Residential Buildings in the Karst Area of Guilin. 2021, 1-15, 13 (22), Sustainability, https://doi.org/10.3390/su132212764 [
Article] [
DOI]
27. Wu S., & Sun J. Q., Two-stage regression model of thermal comfort in office buildings. 2012, 88-96, 57, Building and Environment, doi:10.1016/j.buildenv.2012.04 [
Article] [
DOI]
28. Wang Z., Cao B. Lin B. Zhu Y., Investigation of thermal comfort and behavioral adjustments of older people in residential environments in Beijing. 2020, 217, Energy and Buildings, DOI: 10.1016/j.enbuild.2020.110001 [
Article] [
DOI]
29. Galassi V., & Madlener R., Shall I open the window? Policy implications of thermal-comfort adjustment practices in residential buildings. 2018, 518-527, 119, Energy Policy, https://doi.org/10.1016/j.enpol.2018.03.015 [
Article] [
DOI]
30. Fabi V., Andersen R V. Corgnati S. & Olesen B. W., Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. 2012, 188-198, 55, Building and Environment, https://doi.org/10.1016/j.buildenv.2012.07.009 [
Article] [
DOI]
31. de Dear R J., & Brager G. S., Developing an Adaptive Model of Thermal Comfort and Preference. 1998), UC Berkeley: Center for the Built Environment. Retrieved from https://escholarship.org/uc/item/4qq2p9c6 [
Article]
32. Wang Z., de Dear R. Luoa M. Lin B. Hea Y. Ghahramani A. & Zhu Y., Individual difference in thermal comfort: A literature review. 2018, 181–193, 138, Building and Environment, https://doi.org/10.1016/j.buildenv.2018.04.040 [
Article] [
DOI]
33. Moujalled B., Cantin R. & Guarracino G., Comparison of thermal comfort algorithms in naturally ventilated office buildings. 2008, 2215-2223, 40 (12), Energy and Buildings, doi: 10.1016/j.enbuild.2008.06.014 [
Article] [
DOI]
34. Keyvanfar A., Shafaghat A. Abd Majid M Z. Lamit H B. Hussin M W. Ali K N B. & Saad A. D., User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment. 2014, 277-295, 39, Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2014.07.094 [
Article] [
DOI]
35. Afshari M., Pourdeyhimi S. Saleh Sedgh poor B., The Environmental Adaptation of Human Lifestyle. 2016, 3-16, 34 (152), Journal of Housing and Rural Environment, URL: http://jhre.ir/article-1-809-fa.html [
Article]
36. Wang X., Wang D. Chen Sh. & Wu. J., Simulation of Low Energy Consumption Strategy for Residential Buildings in Hangzhou Based on Clustering Behavior. International Symposium on Mechanics, Structures and Materials Science (MSMS 2018), AIP Conf. Proc. 1995, 020022-1–020022-5, https://doi.org/10.1063/1.5048753 [
Article] [
DOI]
37. Forcada N., Gangolells M. Casals M. Tejedor B. Macarulla M. & Gaspar K., Field study on adaptive thermal comfort models for nursing homes in the Mediterranean climate. 2021, 252, Energy & Buildings, https://doi.org/10.1016/j.enbuild.2021.111475 [
Article] [
DOI]
38. Gou Z., Gamage W. Siu-Yu Lau S. & Sing-Yeung Lau S., An Investigation of Thermal Comfort and Adaptive Behaviors in Naturally Ventilated Residential Buildings in Tropical Climates: A Pilot Study. 2018, 1-17, 8 (5), Buildings, Doi: 10.3390/buildings8010005 [
Article] [
DOI]
39. Bienvenido-Huertas D., Pulido-Arcas J A. Rubio-Bellido C. & Perez-Fargallo A., Feasibility of adaptive thermal comfort for energy savings in cooling and heating: A study on Europe and the Mediterranean basin. 2021, 36, Urban Climate, https://doi.org/10.1016/j.uclim.2021.100807 [
Article] [
DOI]
40. Shahzad S., Disci ZN. Mody S. BK S. & Calautit J K., Older People, Thermal Comfort Behaviour and Related Energy Use. International Conference on Applied Energy 2020, Dec. 1-Dec. 10, 2020, Bangkok/Virtual Paper ID: 0002. [
Article]
41. Korsavi S S., & Montazami A., Children’s thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. 2020, 214, Energy & Buildings, https://doi.org/10.1016/j.enbuild.2020.109857 [
Article] [
DOI]
42. Rajan K C., Rijal H B. Shukuya M. & Yoshida K., Importance of Behavioral Adjustments for Adaptive Thermal Comfort in a Condominium with HEMS System. 2019, 163-170, 15 (3), Journal of the Institute of Engineering, DOI: 10.3126/jie.v15i3.32175 [
Article] [
DOI]
43. Ioannou A., & Itard L., In-situ and real time measurements of thermal comfort and its determinants in thirty residential dwellings in the Netherlands. 2017, 487–505, 139, Energy and Buildings, http://dx.doi.org/10.1016/j.enbuild.2017.01.050 [
Article] [
DOI]
44. Rupp, R F., Andersen R K. Toftuma J. & Ghisi E., Occupant behaviour in mixed-mode office buildings in a subtropical climate: Beyond typical models of adaptive actions. 2021, 190, Building and Environment, https://doi.org/10.1016/j.buildenv.2020.107541 [
Article] [
DOI]
45. Keyvanfar A., Shafaghat A. Abd Majida M Z. Lamit H. & Nita Ali K., Correlation Study on User Satisfaction from Adaptive Behavior and Energy Consumption in Office Buildings. 2014, 89–97, 70 (7), Journal Technology (Sciences & Engineering), DOI: https://doi.org/10.11113/jt.v70.3584 [
Article] [
DOI]
46. Chen Sh., Zhang G. Xia X. Chen Y. Setunge S. & Shi L., The impacts of occupant behavior on building energy consumption: A review. 2021, 45, Sustainable Energy Technologies and Assessments, https://doi.org/10.1016/j.seta.2021.101212 [
Article] [
DOI]
47. Albatayneh A., Jaradat M. AlKhatib M B. Abdallah R. Juaidi A. & Manzano-Agugliaro F., The Significance of the Adaptive Thermal Comfort Practice over the Structure Retrofits to Sustain Indoor Thermal Comfort. 2021, 14, Energies, https://doi.org/10.3390/en14102946 [
Article] [
DOI]
48. Heidari SH., Thermal comfort in Iranian Courtyard housing. 2000, PhD thesis, University of Sheffield. https://etheses.whiterose.ac.uk/10239/ [
Article]
49. Nicol J F., Thermal comfort – A handbook for Field studies toward an adaptive model. 1993, School of Architecture, University of East London, UK. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=34862 [
Article]