بهینه‌سازی چند هدفه فرم پارامتریک بنای مسکونی بومی بر پایه آسایش در اقلیم گرم و خشک شهر یزد

نوع مقاله : پژوهشی اصیل

نویسندگان
1 استادیار معماری، گروه معماری، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.
2 کارشناسی ارشد معماری فناوری گرایش دیجیتال، گروه معماری، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
اهداف: با توجه به سهم حدود ۳۵ درصدی مصرف انرژی توسط ساختمان‌ها، مدیریت مصرف انرژی توجه ویژه‌ای از سوی معماران خواستار است. فرم بنا یکی از تأثیرگزارترین پارامترها بر میزان مصرف انرژی است و شهر یزد به عنوان نمونه اقلیم گرم و خشک در جهان که دارای تابستان‌های گرم و طولانی است مورد توجه پژوهش حاضر است. هدف از این پژوهش ارائه راهکاری برای تولید فرم بهینه ساختمان بومی مستقل به عنوان سیاست پایه‌ای در فاز طراحی مفهومی در شهر یزد است.

روش‌ها: با استفاده از مدل‌سازی پارامتریک و شبیه‌سازی انرژی توسط ابزار رایانه‌ای مناسب، بهینه‌سازی چندهدفه فرم ساختمان با در نظر گرفتن دو شاخص آسایش حرارتی و آسایش بصری توسط الگوریتم ژنتیک برای اقلیم گرم و خشک شهر یزد انجام گرفت. چند مقدار مساحت زیربنا به عنوان ورودی در نظر گرفته شد و نتایج در قالب چهار نوع فرم کلی مکعب، L، U و O ارائه شد.

یافته‌ها: در این پژوهش گزینه‌های بهینه مورد تحلیل و مقایسه قرار گرفت و مدلی کلی برای فرم و جهتگیری بهینه ساختمان ارائه شد. نتایج پژوهش نشان داد که بهینه‌ترین فرم با در نظر گرفتن شاخص آسایش حرارتی به عنوان شاخص دارای اولویت برای تمامی مساحت‌های مورد بررسی، فرم مکعب مستطیل با فاکتور شکل حدود ۸/۱ و جهتگیری شمالی-جنوبی است.

نتیجه‌گیری: استفاده کردن از فرم و جهتگیری بهینه ساختمان به عنوان سیاست غیر فعال که پایه‌ای برای سیاست‌های فعال و غیر فعال دیگر است می‌تواند تأثیر مناسبی بر ایجاد آسایش و کاهش مصرف انرژی به صورت توأمان داشته باشد.

کلیدواژه‌ها

موضوعات


1. Zou Y, Zhan Q, Xiang K. A comprehensive method for optimizing the design of a regular architectural space to improve building performance. Energy Reports, 2021 Nov; 7:981-996. https://doi.org/10.1016/j.egyr.2021.01.097
2. Fang Y, Cho S. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy, 2019 Oct; 191: 7-18. http://dx.doi.org/10.1016/j.solener.2019.08.039
3. Binghui S, Wang J, Yao X, Shi X, Jin X, Zhou X. Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Advanced Engineering Informatics, 2019 Apr; 40: 93-109. https://doi.org/10.1016/j.aei.2019.03.006
4. Feng J, Luo X, Gao M, Abbas A, Xu Y, Pouramini S. Minimization of energy consumption by building shape optimization using an improved Manta-Ray Foraging Optimization algorithm. Energy Reports, 2021 Nov; 7: 1068-1078. https://doi.org/10.1016/j.egyr.2021.02.028
5. Hemsath T.L., Bandhosseini K.A. Sensitivity analysis evaluating basic building geometry's effect on energy use. Renewable Energy, 2015 Apr; 76:526- 538. https://doi.org/10.1016/j.renene.2014.11.044
6. Ostergard T, Jensen R. L., Maagaard S. E. Building simulations supporting decision making in early design – A review. Renewable and Sustainable Energy Reviews, 2016 Aug; 61: 187-201. https://doi.org/10.1016/j.rser.2016.03.045
7. Wortmann T, Nannicini G. Introduction to Architectural Design Optimization. In City Networks – Planning for Health and Sustainability. Springer International Publishing; 2017. http://dx.doi.org/10.1007/978-3-319-65338-9_14
8. Jamalpour S., Arbaban A. The effect of climate on the formation of the architecture of Yazd houses. National Conference on Native Iranian Architecture and Urban Planning. 2016 March.[Persian] Available at: https://civilica.com/doc/544758
9. Zarei M, Mirdehghan F. The role of the central courtyard pattern in adjusting the harsh conditions of the hot and dry climate of Yazd region. Irani Islamic Shahr Journal. 2015;6(23):5-18. [Persian] Available at: https://www.sid.ir/paper/177438/fa
10. Mohammed S A, Awad O A, Radhi A M. Optimization of energy consumption and thermal comfort for intelligent building management system using genetic algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 2020 Dec; 20(3): 1613-1625. http://dx.doi.org/10.11591/ijeecs.v20.i3.pp1613-1625
11. Konis K, Gamas A, Kensek K. Passive performance and building form: An optimization framework for early-stage design support. Solar Energy. 2016 Feb; 125: 161-179. https://doi.org/10.1016/j.solener.2015.12.020
12. Gerber D J, Lin S H. Designing in complexity: Simulation, integration, and multidisciplinary design optimization for architecture. SIMULATION. 2013 Aug; 90(8). https://doi.org/10.1177/0037549713482027
13. Motazedian F. Analysis of Optimum Window-to-Wall Ratio in Horizontally Expanded and Vertically Expanded Windows in Tehran, Iran. International Journal of Architectural Engineering & Urban Planning. 2019 June; 29(1): 61-68. Available at: https://ijaup.iust.ac.ir/article-1-428-en.pdf
14. Stazi F., Naspi F., Ulpaini G., Di Perna C. Indoor air quality and thermal comfort optimization in classrooms developing an automatic system for windows opening and closing. Energy and Buildings. 2017 Jan; 139: 732-746. https://doi.org/10.1016/j.enbuild.2017.01.017
15. Tang R., Wang S. Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids. Applied Energy. 2019 May; 242: 873-882. https://doi.org/10.1016/j.apenergy.2019.03.038
16. Ameur M., Kharbouch Y., Mimet A. Optimization of passive design features for a naturally ventilated residential building according to the bioclimatic architecture concept and considering the northern Morocco climate. Building Simulation. 2020 Jan; 13(3): 677-689. http://dx.doi.org/10.1007/s12273-019-0593-6
17. Gou S., Nik V. M., Scartezzini J. L., Zhao Q., Li Z. Passive design optimization of newly‐built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy and Buildings. 2017 Oct; 169: 484-506. http://dx.doi.org/10.1016/j.enbuild.2017.09.095
18. Shahbazi Y., Heydari M., Haghparast F. An early-stage design optimization for office buildings’ fac¸ade providing high-energy performance and daylight. Indoor and Built Environment. 2019 Apr; 28(10): 1-18. http://dx.doi.org/10.1177/1420326X19840761
19. Lu S., Wang R., Zheng S. Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China. Sustainability. 2017 Dec; 9(12): 1-30. https://doi.org/10.3390/su9122288
20. Lucarelli C C, Carlo J C, Martinez A C P. Simulation-based optimization for an origami-shaped canopy. PARC Pesquisa em Arquitetura e Construcao. 2020 Aug; 11(0): 1-20. http://dx.doi.org/10.20396/parc.v11i0.8658250
21. Steadman P. Why are most buildings rectangular? Architectural Research Quarterly. 2006 June; 10(2): 119-130. http://dx.doi.org/10.1017/S1359135506000200
22. Omrani H., Marsono A. K. Optimization of Building Energy Performance through Hybridization Design Strategies. British Journal of Applied Science & Technology. 2015 Jan; 13(1): 1-16. http://dx.doi.org/10.9734/BJAST/2016/23116
23. Bekkouche S.M.A., Benouaz T., Cherier M.K., Hamdani M., Yaiche M.R., Benamrane N. Influence of the compactness index to increase the internal temperature of a building in saharan climate. Energy and Buildings. 2013 Aug; 66: 678-687. https://doi.org/10.1016/j.enbuild.2013.07.077
24. Aksoy U.T., Inalli M. Impacts of some building passive design parameters on heating demand for a cold region. Building and Environment. 2006. Dec; 41(12): 1742-1754. http://dx.doi.org/10.1016/j.buildenv.2005.07.011
25. Mingfang T. Solar control for buildings. Building and Environment. 2002 July; 37(7): 659-664. https://doi.org/10.1016/S0360-1323(01)00063-4
26. Faizi F., Noorani M., Ghaedi A., Mahdavinejadd M. Design an optimum pattern of orientation in residential complexes by analyzing the level of energy consumption (case study: Maskan mehr complexes, Tehran, Iran). Procedia Engineering. 2011 Dec; 21: 1179-1187. https://doi.org/10.1016/j.proeng.2011.11.2128
27. Fallahpour M. Investigating the location of residential complexes in Yazd city according to the climatic parameters of wind and solar radiation. The first annual conference of architecture, urban planning & urban management. 2015 Dec. [Persian] Available at: https://www.sid.ir/FileServer/SF/3691394H01104
28. Jahanbakhsh S., Esmaeelpour N. Basics of climatic design of residential units in Yazd city (thermal and lighting basics). The Geographical Quarterly of the Land. 2004. [Persian] Available at: https://sid.ir/paper/454406/fa
29. Orosa J.A. and Oliveira A.C. A new thermal comfort approach comparing adaptive and PMV models. Renewable Energy. 2011 Mar; 36(3): 951-956. http://dx.doi.org/10.1016/j.renene.2010.09.013
30. Humphreys M.A. and Nicol J.F. Understanding the Adaptive Approach to Thermal Comfort, ASHRAE Transactions. 1998 Jan;104(1): 991-1004. Available at: https://cir.nii.ac.jp/crid/1573387449932570752
31. Saberi O, Saneii P, Javanbakht A. Thermal Comfort in Architecture. Engineering, Environmental Science. 2006. Available at: https://www.academia.edu/40447340/Thermal_Comfort_in_Architecture
32. Rana D.S., Malhotra R., Kumar D. and Aghi G. Guidelines for optimum visual comfort derived from key performance parameters. The Energy and Resources Institude. 2021. Available at: https://www.teriin.org/sites/default/files/2021-11/Guidelines-for-Visual-Comfort.pdf
33. Shafavi Moghaddam N., Zomorodian Z. S., Tahsildoost M. Ability of daylight Indicators in estimating adequate lighting in space based on user assessments Case study: Architecture design studios in Tehran. Soffeh. 2019 Sep; 29(3): 37-56. [Persian] Available at: https://soffeh.sbu.ac.ir/article_100480.html
34. Lakhdari K., Sriti L. and Painter B. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Building and Environment. 2021 July; 204(2):108173. http://dx.doi.org/10.1016/j.buildenv.2021.108173