1. Shekhawat K, Pinki N, Duarte JP. A graph theoretical approach for creating building floor plans. In: Communications in computer and information science. 2019. p. 3–14. https://doi.org/10.1007/978-981-13-8410-3_1 [
Article] [
DOI]
2. Grason J. An approach to computerized space planning using graph theory. In: Proceedings of the 8th Design Automation Workshop. Association for Computing Machinery New York; 1971. p. 170–8. https://doi.org/10.1145/800158.805070 [
Article] [
DOI]
3. Alexander C. Notes on the synthesis of form. Harvard University Press; 1964. Available at: https://books.google.com.om/books?hl=en&lr=&id=Kh3T3XFUfPQC&oi=fnd&pg=PA1&dq=Alexander+C.+Notes+on+the+synthesis+of+form.+Harvard+University+Press%3B+1964.&ots=_F22JzknHA&sig=H7QUhL52gz6TqOitTOT0D9rofAU&redir_esc=y#v=onepage&q=Alexander%20C.%20Notes%20on%20the%20synthesis%20of%20form.%20Harvard%20University%20Press%3B%201964.&f=false [
Article]
4. Stiny G, Mitchell WJ. The Palladian grammar. Environment and Planning B Planning and Design. 1978 Jan 1;5(1):5–18. https://doi.org/10.1068/b050005 [
Article] [
DOI]
5. Çaǧdaş G. A shape grammar model for designing row-houses. Design Studies. 1996 Jan 1;17(1):35–51. https://doi.org/10.1016/0142-694x(95)00005-c [
Article] [
DOI]
6. Eastman CM. Automated space planning. Artificial Intelligence. 1973 Jan 1;4(1):41–64. https://doi.org/10.1016/0004-3702(73)90008-8 [
Article] [
DOI]
7. Rahbar M, Bemanian M, Davaei Markazi A. Training CGAN Algorithm for Generating Architectural Layout Heat Map. Armanshahr Architecture & Urban Development Journal [Internet]. 2020 Nov 21;13(32):131–42. https://www.doi.org/10.22034/aaud.2020.154406.1717 [
Article] [
DOI]
8. Aalaei M, Saadi M, Rahbar M, Ekhlassi A. Architectural layout generation using a graph-constrained conditional Generative Adversarial Network (GAN). Automation in Construction. 2023 Nov 1;155:105053. https://doi.org/10.1016/j.autcon.2023.105053 [
Article] [
DOI]
9. Nauata N, Chang KH, Cheng CY, Mori G, Furukawa Y. House-GAN: Relational Generative Adversarial Networks for graph-constrained House Layout Generation. arXiv (Cornell University). 2020 Jan 1; https://doi.org/10.48550/arXiv.2003.06988 [
Article] [
DOI]
10. Nauata N, Hosseini S, Chang KH, Chu H, Cheng CY, Furukawa Y. House-GAN++: Generative Adversarial Layout Refinement Networks. arXiv (Cornell University). 2021 Jan 1. https://doi.org/10.48550/arXiv.2103.02574 [
Article] [
DOI]
11. Wu W, Fu XM, Tang R, Wang Y, Qi YH, Liu L. Data-driven interior plan generation for residential buildings. ACM Transactions on Graphics. 2019 Nov 8;38(6):1–12. https://doi.org/10.1145/3355089.3356556 [
Article] [
DOI]
12. Zawidzki M, Tateyama K, Nishikawa I. The constraints satisfaction problem approach in the design of an architectural functional layout. Engineering Optimization. 2011 Sep 1;43(9):943–66. https://doi.org/10.1080/0305215x.2010.527005 [
Article] [
DOI]
13. Dino IG. An evolutionary approach for 3D architectural space layout design exploration. Automation in Construction. 2016 Sep 1;69:131–50. https://doi.org/10.1016/j.autcon.2016.05.020 [
Article] [
DOI]
14. Yeh IC. Architectural layout optimization using annealed neural network. Automation in Construction. 2006 Jul 1;15(4):531–9. https://doi.org/10.1016/j.autcon.2005.07.002 [
Article] [
DOI]
15. Gero JS, Kazakov VA. Evolving design genes in space layout planning problems. Artificial Intelligence in Engineering. 1998 Jul 1;12(3):163–76. https://doi.org/10.1016/s0954-1810(97)00022-8 [
Article] [
DOI]
16. Yi H. User-driven automation for optimal thermal-zone layout during space programming phases. Architectural Science Review. 2015 Apr 2;59(4):279–306. https://doi.org/10.1080/00038628.2015.1021747 [
Article] [
DOI]
17. Guo Z, Li B. Evolutionary approach for spatial architecture layout design enhanced by an agent-based topology finding system. Frontiers of Architectural Research. 2017 Mar 1;6(1):53–62. https://doi.org/10.1016/j.foar.2016.11.003 [
Article] [
DOI]
18. Fortin G. BUBBLE: Relationship diagrams using iterative vector approximation. Design Automation Conference. 1978 Jun 19;145–51. https://dl.acm.org/citation.cfm?id=803079 [
Article]
19. Arvin SA, House DH. Modeling architectural design objectives in physically based space planning. Automation in Construction . 2002 Feb 1;11(2):213–25. https://doi.org/10.1016/s0926-5805(00)00099-6 [
Article] [
DOI]
20. Chatzikonstantinou I. A 3-Dimensional Architectural Layout Generation Procedure for optimization applications : DC-RVD. eCAADe Proceedings. 2014 Jan 1; https://doi.org/10.52842/conf.ecaade.2014.1.287 [
Article] [
DOI]
21. AlOmani A, El-Rayes K. Automated generation of optimal thematic architectural layouts using image processing. Automation in Construction . 2020 Sep 1;117:103255. https://doi.org/10.1016/j.autcon.2020.103255
22. Keshavarzi M, Rahmani-Asl M. GenFloor: Interactive generative space layout system via encoded tree graphs. Frontiers of Architectural Research . 2021 Dec 1;10(4):771–86. https://doi.org/10.1016/j.foar.2021.07.003 [
Article] [
DOI]
23. Koenig R, Knecht K. Comparing two evolutionary algorithm based methods for layout generation: Dense packing versus subdivision. Artificial Intelligence for Engineering Design Analysis and Manufacturing. 2014 Jul 22;28(3):285–99. https://doi.org/10.1017/s0890060414000237 [
Article] [
DOI]
24. Ruch J. Interactive Space Layout: A Graph Theoretical Approach. In: 15th Design Automation Conference. IEEE; 1978. p. 152–7. https://doi.org/10.1109/dac.1978.1585162 [
Article] [
DOI]
25. Wong SSY, Chan KCC. EvoArch: An evolutionary algorithm for architectural layout design. Computer-Aided Design . 2009 Sep 1;41(9):649–67. https://doi.org/10.1016/j.cad.2009.04.005 [
Article] [
DOI]
26. Roth J, Hashimshony R. Algorithms in graph theory and their use for solving problems in architectural design. Computer-Aided Design. 1988 Sep 1;20(7):373–81. https://doi.org/10.1016/0010-4485(88)90214-x [
Article] [
DOI]
27. Lobos D, Trebilcock M. Informação de desempenho de um edifício e gráficos de abordagem na concepção de projetos. Arquitetura Revista. 2014 Aug 4;10(1). https://doi.org/10.4013/arq.2014.101.03 [
Article] [
DOI]
28. Verma M, Thakur MK. Architectural space planning using Genetic Algorithms. In: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE). IEEE; 2010. p. 268–75. https://doi.org/10.1109/iccae.2010.5451497 [
Article] [
DOI]
29. Schwarz A, Berry DM, Shaviv E. On the use of the automated building design system. Computer-Aided Design. 1994 Oct 1;26(10):747–62. https://doi.org/10.1016/0010-4485(94)90013-2 [
Article] [
DOI]
30. Medjdoub B, Yannou B. Separating topology and geometry in space planning. Computer-Aided Design. 2000 Jan 1;32(1):39–61. https://doi.org/10.1016/s0010-4485(99)00084-6 [
Article] [
DOI]
31. Nagy D, Lau D, Locke J, Stoddart J, Villaggi L, Wang R, et al. Project Discover: An application of Generative Design for Architectural Space planning. In: SIMAUD ’17: Proceedings of the Symposium on Simulation for Architecture and Urban Design. Society for Computer Simulation International San Diego, CA, United States; 2017. p. 1–8. https://doi.org/10.22360/simaud.2017.simaud.007 [
Article] [
DOI]
32. Rodrigues E, Gaspar AR, Gomes Ál. An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, Part 1: Methodology. Computer-Aided Design. 2013 May 1;45(5):887–97. https://doi.org/10.1016/j.cad.2013.01.001 [
Article] [
DOI]
33. Babakhani R. The machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix. Maremat & Memari-e Iran. 2023;13(34). http://mmi.aui.ac.ir/article-1-1297-fa.html [
Article]
34. Sadri A, Mirzarezaee M, Soleimani M. Analyzing methods and approaches to produce automatic space layouts. Memarshahr. 2023;1(1):90–117. https://sanad.iau.ir/fa/Article/1041419 [
Article]
35. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. arXiv (Cornell University) . 2014 Jan 1; https://doi.org/10.48550/arxiv.1406.2661
36. Sohl-Dickstein J, Weiss EA, Maheswaranathan N, Ganguli S. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. arXiv.org. 2015. https://doi.org/10.48550/arXiv.1503.03585 [
Article] [
DOI]
37. Chaillou S. ArchiGAN: Artificial Intelligence x Architecture. In: Architectural Intelligence. 2020. p. 117–27. https://doi.org/10.1007/978-981-15-6568-7_8 [
Article] [
DOI]
38. Hu R, Huang Z, Tang Y, Van Kaick O, Zhang H, Huang H. Graph2Plan. ACM Transactions on Graphics. 2020 Aug 12;39(4). https://doi.org/10.1145/3386569.3392391 [
Article] [
DOI]
39. Huang W, Zheng H. Architectural Drawings Recognition and Generation through Machine Learning. ACADIA Quarterly . 2018 Jan 1; https://doi.org/10.52842/conf.acadia.2018.156 [
Article] [
DOI]
40. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-Resolution Image Synthesis with Latent Diffusion Models. arXiv (Cornell University). 2021 Jan 1; https://doi.org/10.48550/arxiv.2112.10752 [
Article] [
DOI]
41. Ruiz N, Li Y, Jampani V, Pritch Y, Rubinstein M, Aberman K. DreamBooth: Fine Tuning Text-to-Image diffusion models for Subject-Driven Generation. arXiv (Cornell University). 2022 Jan 1; https://doi.org/10.48550/arXiv.2208.12242 [
Article] [
DOI]
42. Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. Learning transferable visual models from natural language supervision. arXiv (Cornell University) . 2021 Jan 1; https://doi.org/10.48550/arXiv.2103.00020 [
Article] [
DOI]
43. Fakhr BV, Mahdavinejad M, Rahbar M, Dabaj B. Design Optimization of the Skylight for Daylighting and Energy Performance Using NSGA-II. Journal of Daylighting. 2023 May 23;10(1):72-86. https://doi.org/10.15627/jd.2023.6 Available at: https://solarlits.com/jd/10-72 [
Article] [
DOI]
44. Rahbar M, Mahdavinejad M, Bemanian M, Davaie Markazi AH, Hovestadt L. Generating Synthetic Space Allocation Probability Layouts Based on Trained Conditional-GANs. Applied Artificial Intelligence. 2019 Jul 3;33(8):689-705. https://doi.org/10.1080/08839514.2019.1592919. Available at: https://www.tandfonline.com/doi/full/10.1080/08839514.2019.1592919 [
Article] [
DOI]
45. Rahbar M, Mahdavinejad M, Bemanian M, Davaie-Markazi A. Generating space layout heat maps with cGAN algorithms in artificial intelligence. Armanshahr Architecture & Urban Development. 2020;13(32):131-142. https://doi.org/10.22034/aaud.2020.154406.1717 [
Article] [
DOI]
46. Rahbar M, Mahdavinejad, M, Bemanian, M, Davaie-Markazi, A. Artificial neural network for outlining and predicting environmental sustainable parameters. Journal of Sustainable Architecture and Urban Design. 2020;7(2):169-182. https://doi.org/10.22061/jsaud.2019.4501.1333 [
Article] [
DOI]
47. Rahbar M, Mahdavinejad M, Markazi A.H.D., Bemanian M. Architectural layout design through deep learning and agent-based modeling: A hybrid approach. Journal of Building Engineering. 2022 April15; 47, 103822. https://doi.org/10.1016/j.jobe.2021.103822. Available at: https://www.sciencedirect.com/science/article/abs/pii/S2352710221016806?via%3Dihub [
Article] [
DOI]
48. Esmaeilian Toussi H, Etesam I, Mahdavinejad M. The Application of Evolutionary Algorithms and Shape Grammar in the Design Process Based upon Traditional Structures. The Monthly Scientific Journal of Bagh-e Nazar, 2021 May;18(95):19-36. https://doi.org/10.22034/BAGH.2019.161797.3914 [
Article] [
DOI]
49. Goharian A, Daneshjoo K, Shaeri J, Mahdavinejad M, Yeganeh M. A designerly approach to daylight efficiency of central light-well; combining manual with NSGA-II algorithm optimization. Energy. 2023 Apr 17:127402. https://doi.org/10.1016/j.energy.2023.127402 Available at: https://www.sciencedirect.com/science/article/abs/pii/S036054422300796X?via%3Dihub [
Article] [
DOI]
50. Mardomi K, Soheilifard M, Aghaazizi M. Integration of Architecture & Structure in Optimizing Supports’ Location Using Genetic Algorithm Method; Case Study: Cladding based on Iranian Girih. Naqshejahan - Basic Studies and New Technologies of Architecture and Planning. 2015 Jun 10;5(2):65-75. [Persian] https://dorl.net/dor/20.1001.1.23224991.1394.5.2.3.6 [
Article]
51. Mardomi K, Moodi A. Agent-Based Modeling; a Paradigm to Deal with Complexity and Uncertainty in Architectural and Environmental Problems. Naqshejahan - Basic studies and New Technologies of Architecture and Planning. 2019 Sep 10;9(2):145-55. [Persian] https://dorl.net/dor/20.1001.1.23224991.1398.9.2.1.2 [
Article]
52. Tadayon K, Mahdavinejad M, Shahcheraghi A. Advanced mathematical algorithms to outline integrated architectural design process. Journal of Sustainable Architecture and Urban Design. 2021 Aug 23;9(1):1-12. https://doi.org/10.22061/JSAUD.2020.6603.1686 [
Article] [
DOI]
53. Tadayon K, Mahdavinejad M, Shahcheraghi A. Application of Machine Learning Methodology in the Design of the Built Environment. Urban Design Discourse: A Review of Contemporary Literatures and Theories. 2024; 5(2): 116-128. Available at: http://udd.modares.ac.ir/article-40-75893-fa.html [
Article]